4.7 Article

Models for the acute and chronic aqueous toxicity of vanadium to Daphnia pulex under a range of surface water chemistry conditions

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 179, Issue -, Pages 301-309

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2019.04.052

Keywords

Vanadium; Oil sands; OSPW; Water chemistry

Funding

  1. Syncrude Canada Ltd. [EGP 445039-2012]
  2. University of Saskatchewan Toxicology Centre
  3. NSERC CREATE-HERA program

Ask authors/readers for more resources

Alberta's oil sands petroleum coke (PC) generation has in recent years surpassed 10 million tonnes. Petroleum coke has been proposed as an industrial-scale sorbent to reduce concentrations of organic chemicals in oil sands process-affected water (OSPW). However, PC contains up to 1000 mg of vanadium (V) per kg of PC, and during the treatment it leaches from coke reaching levels of up to 7 mg/L in treated OSPW. Little information is available on how common water quality variables affect the toxicity of V to aquatic organisms. Here descriptive relationships are presented to describe how site-specific surface water characteristics representative of the Alberta oil sands region influence the toxicity of V to Daphnia pulex. Results revealed that when D. pulex was exposed to an increase in pH, a threshold relationship was found where acute V toxicity increased from a lethal median concentration (LC50) of 1.7 to 1.2 mg V/L between pH 6 and 7 and then levelled off at around 1 mg V/L. When alkalinity (from 75 to 541 mg/L as CaCO3) and sulphate (from 54 to 394 mg/L) increased, the acute toxicity of V decreased slightly with LC(50)s changing from 0.6 to 1.6, and from 0.9 to 1.4, respectively. When the length of V exposure was extended (from 2 to 21 d), only an increase of sulphate from 135 to 480 mg/L caused a slight increase in V toxicity from a LC50 of 0.6 to 0.4 mg V/L, the opposite trend seen in the acute exposures. In addition, the influence of two OSPW representative mixtures of increasing sodium and sulphate, and increasing alkalinity and sulphate on V acute toxicity to D. pulex were evaluated; only the mixture of increasing sodium (from 18 to 536 mg/L) and sulphate (from 55 to 242 mg/L) caused a slight decrease in V acute toxicity (LC50 1.0-2.1 mg V/L). Evidence is presented that variations in surface water chemistry can affect V toxicity to daphnids, although only to a small degree (i.e. within a maximum factor of 2 in all cases evaluated here). These relationships should be considered when creating new water quality guidelines or local benchmarks for V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available