4.7 Article

Bio-desalination of brackish and seawater using halophytic algae

Journal

DESALINATION
Volume 465, Issue -, Pages 104-113

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2019.05.002

Keywords

Bio-desalination; Halophytic algae; Brackish water; Photobioreactor

Funding

  1. EPA internal competition Pathfinder Innovation Projects challenge in pursuit of high risk, high-reward research ideas

Ask authors/readers for more resources

Global demand for water is rising. A sustainable and energy efficient approach is needed to desalinate brackish sources for agricultural and municipal water use. Genetic variation among two algae species, Scenedesmus species (S. sp.) and Chiorella vulgaris (C. vulgaris), in their tolerance and uptake of salt (NaCl) was examined for potential bio-desalination of brackish water. Salt-tolerant hyper-accumulators were evaluated in a batch photobioreactors over salinity concentration ranging from 2 g/L to 20 g/L and different nutrient composition for their growth rate and salt-uptake. During algae growth phase, the doubling time varied between 0.63 and 1.81 days for S. sp. and 3.1 to 5.9 for C. vulgaris. The initial salt-uptake followed pseudo first order kinetics where the rate constant ranged between -3.58 and -7.68 day(-1) reaching up to 30% in a single cycle. The halophyte algae S. sp. and C. vulgaris that were selected for pilot-scale studies here represent a promising new method for desalination of brackish waters. Halophytic technologies combined with the potential use of algae for biofuel, which offsets energy demand, can provide a sustainable solution for clean, affordable water and energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available