4.7 Article

Energy consumption modelling using deep learning embedded semi-supervised learning

Journal

COMPUTERS & INDUSTRIAL ENGINEERING
Volume 135, Issue -, Pages 757-765

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cie.2019.06.052

Keywords

Energy modelling; Intelligent manufacturing; Deep learning; Semi-supervised learning; Data mining

Ask authors/readers for more resources

Reduction of energy consumption in the steel industry is a global issue where government is actively taking measures to pursue. A steel plant can manage its energy better if the consumption can be modelled and predicted. The existing methods used for energy consumption modelling rely on the quantity of labelled data. However, if the labelled energy consumption data is deficient, its underlying process of modelling and prediction tends to be difficult. The purpose of this study is to establish an energy value prediction model through a big data-driven approach. Owing to the fact that labelled energy data is often limited and expensive to obtain, while unlabelled data is abundant in the real-world industry, a semi-supervised learning approach, i.e., deep learning embedded semi-supervised learning (DLeSSL), is proposed to tackle the issue. Based on DLeSSL, unlabelled data can be labelled and compensated using a semi-supervised learning approach that has a deep learning technique embedded so to expand the labelled data set. An experimental study using a large amount of furnace energy consumption data shows the merits of the proposed approach. Results derived using the proposed method reveal that deep learning (DLeSSL based) outperforms the deep learning (supervised) and deep learning (label propagation based) when the labelled data is limited. In addition, the effect on performance due to the size of labelled data and unlabelled data is also reported.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available