4.6 Article

What Does Reduced FDG Uptake Mean in High-Grade Gliomas?

Journal

CLINICAL NUCLEAR MEDICINE
Volume 44, Issue 12, Pages 936-942

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/RLU.0000000000002765

Keywords

FDG PET; glioma; metabolomics; HRMAS-NMR spectroscopy

Ask authors/readers for more resources

Purpose As well as in many others cancers, FDG uptake is correlated with the degree of malignancy in gliomas, that is, commonly high FDG uptake in high-grade gliomas. However, in clinical practice, it is not uncommon to observe high-grade gliomas with low FDG uptake. Our aim was to explore the tumor metabolism in 2 populations of high-grade gliomas presenting high or low FDG uptake. Methods High-resolution magic-angle spinning nuclear magnetic resonance spectroscopy was realized on tissue samples from 7 high-grade glioma patients with high FDG uptake and 5 high-grade glioma patients with low FDG uptake. Tumor metabolomics was evaluated from 42 quantified metabolites and compared by network analysis. Results Whether originating from astrocytes or oligodendrocytes, the high-grade gliomas with low FDG avidity represent a subgroup of high-grade gliomas presenting common characteristics: low aspartate, glutamate, and creatine levels, which are probably related to the impaired electron transport chain in mitochondria; high serine/glycine metabolism and so one-carbon metabolism; low glycerophosphocholine-phosphocholine ratio in membrane metabolism, which is associated with tumor aggressiveness; and finally negative MGMT methylation status. Conclusions It seems imperative to identify this subgroup of high-grade gliomas with low FDG avidity, which is especially aggressive. Their identification could be important for early detection for a possible personalized treatment, such as antifolate treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available