4.7 Article

Silver nanoparticles induce abnormal touch responses by damaging neural circuits in zebrafish embryos

Journal

CHEMOSPHERE
Volume 229, Issue -, Pages 169-180

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.04.223

Keywords

AgNPs; Touch responses; Electrical membrane properties; Neural circuits

Funding

  1. National Key R&D Program of China [2018YFD0900101]
  2. Fundamental Research Funds for Central Universities [2662018JC024]

Ask authors/readers for more resources

Although silver nanoparticles (AgNPs) are used in various commercial products, the biological effects of AgNPs on fish embryogenesis and the underlying molecular mechanisms are still poorly understood. In this study, both touch responses and neuron membrane potential were found to be abnormal in AgNPs-stressed embryos. Moreover, neurogenesis genes were unveiled to be down-regulated and were enriched in ligand-gated ion channel activity, dopamine receptor signaling pathway, etc. in AgNPs-stressed embryos by microarray assays. Additionally, the down-regulated expression of otpa/sncgb - gad1b/gad2 dopaminergic neurotransmitter genes, robot - vim and glrbb synaptic transmission genes, and motor neuron genes isl1 & isl2a was further identified in both AgNPs- and Ag+-stressed embryos by OCR, whole-mount in situ hybridization (WISH), and by using specific promoter-derived GFP fluorescence transgenic zebrafish. Moreover, the reduced expression of gad1b, gad2, and isl1 could be recovered by adding Ag+ chelating compound L-cysteine in AgNPs stressed embryos. Our results reveal for the first time that it is through damaging the formation of neural circuits, including dopaminergic neurotransmitter, synaptic transmission, and motor activities, that AgNPs induce abnormal electrical membrane properties, leading to dysfunctional touch responses and locomotor escape responses mostly via their released Ag+ during embryogenesis. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available