4.6 Article

Hierarchical Mn3O4 Anchored on 3D Graphene Aerogels via C-O-Mn Linkage with Superior Electrochemical Performance for Flexible Asymmetric Supercapacitor

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 26, Issue 42, Pages 9314-9318

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201903947

Keywords

asymmetric supercapacitors; carbon nanohorns; flexible electronics; graphene aerogels; manganese

Funding

  1. National Natural Science Foundation of China [21646012]
  2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology [2016DX08]
  3. China Postdoctoral Science Foundation [2016M600253, 2017T100246]
  4. Postdoctoral Foundation of Heilongjiang Province
  5. Fundamental Research Funds for the Central Universities
  6. NSRIF [201836]

Ask authors/readers for more resources

Flexible asymmetric supercapacitors are more appealing in flexible electronics because of high power density, wide cell voltage, and higher energy density than symmetric supercapacitors in aqueous electrolyte. In virtues of excellent conductivity, rich porous structure and interconnected honeycomb structure, three dimensional graphene aerogels show great potential as electrode in asymmetric supercapacitors. However, graphene aerogels are rarely used in flexible asymmetric supercapacitors because of easily re-stacking of graphene sheets, resulting in low electrochemical activity. Herein, flower-like hierarchical Mn3O4 and carbon nanohorns are incorporated into three dimensional graphene aerogels to restrain the stack of graphene sheets, and are applied as the positive and negative electrode for asymmetric supercapacitors devices, respectively. Besides, a strong chemical coupling between Mn3O4 and graphene via the C-O-Mn linkage is constructed and can provide a good electron-transport pathway during cycles. Consequently, the asymmetric supercapacitor device shows high rate cycle stability (87.8 % after 5000 cycles) and achieves a high energy density of 17.4 mu Wh cm(-2) with power density of 14.1 mW cm(-2) (156.7 mW cm(-3)) at 1.4 V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available