4.8 Article

Selective Control of Composition in Prussian White for Enhanced Material Properties

Journal

CHEMISTRY OF MATERIALS
Volume 31, Issue 18, Pages 7203-7211

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.9b01494

Keywords

-

Funding

  1. Swedish Strategic Research Program STandUp for Energy
  2. A Forsk foundation [19-705]
  3. Swedish Research Council (VR) [2016-03441]
  4. Swedish Research Council [2016-03441] Funding Source: Swedish Research Council

Ask authors/readers for more resources

Sodium-ion batteries based on Prussian blue analogues (PBAs) are ideal for large-scale energy storage applications due to the ability to meet the huge volumes and low costs required. For Na2-xFe[Fe(CN)(6)](1-y)center dot zH(2)O, realizing its commercial potential means fine control of the concentration of sodium, Fe(CN)(6) vacancies, and water content. To date, there is a huge variation in the literature of composition leading to variable electrochemical performance. In this work, we break down the synthesis of PBAs into three steps for controlling the sodium, vacancy, and water content via an inexpensive, scalable synthesis method. We produce rhombohedral Prussian white Na1.88(5)Fe[Fe-(CN)(6)]center dot 0.18(9)H2O with an initial capacity of 158 mAh/g retaining 90% capacity after 50 cycles. Subsequent characterization revealed that the increased polarization on the 3 V plateau is coincident with a phase transition and reduced utilization of the high-spin Fe(III)/Fe(II) redox couple. This reveals a clear target for subsequent improvements of the material to boost long-term cycling stability. These results will be of great interest for the myriad of applications of PBAs, such as catalysis, magnetism, electrochromics, and gas sorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available