4.7 Article

Application of macromolecular crowding in vitro to investigate the naphthoquinones shikonin, naphthazarin and related analogues for the treatment of dermal scars

Journal

CHEMICO-BIOLOGICAL INTERACTIONS
Volume 310, Issue -, Pages -

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2019.108747

Keywords

Shikonin; Naphthazarin; Hypertrophic scars; Macromolecular crowding

Funding

  1. Singapore's Agency for Science, Technology and Research [SPF 2013/004, IAF-PP/2017, H17/01/a0/009]

Ask authors/readers for more resources

Pathological scarring is an intractable problem for both patients and clinicians. A major obstacle for the development of scar remediation therapies is the paucity of suitable in vivo and in vitro models. The Scar-in-a-jar model was previously established by our colleagues based on the principle of Macromolecular crowding. This has been demonstrated to be an extracellular matrix-rich in vitro model offering a novel tool for studies related to the extracellular matrix. In the study reported herein, we have optimised this approach to model human dermal fibroblasts derived from hypertrophic tissues. This optimised in vitro model has been found to hold similar properties, such as increased collagen I, interleukins and transforming growth factor beta-1 expression, compared to that observed in hypertrophic scar tissue in vivo. In addition, Shikonin has been previously demonstrated to hold potential as a novel hypertrophic scar treatment due to its apoptosis-inducing property on hypertrophic scar fibroblasts. Other Shikonin analogues have also been reported to hold apoptosis-inducing properties in various cancer cell lines, however, the effects of these analogues on hypertrophic scar-related cells are unknown. We therefore evaluated the effects of Shikonin and its analogues on hypertrophic scar-derived human fibroblasts using the optimised Macromolecular crowding model. Our data indicates that Shikonin and Naphthazarin are the most effective molecules compared to related naphthoquinones. The data generated from the study offers a novel in vitro collagen-rich model of hypertrophic scar tissue. It also provides further evidences supporting the use of Shikonin and Naphthazarin as potential treatments for hypertrophic scars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available