4.8 Review

Charge-Carrier Recombination in Halide Perovskites

Journal

CHEMICAL REVIEWS
Volume 119, Issue 20, Pages 11007-11019

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.9b00169

Keywords

-

Funding

  1. MIT-Tata GridEdge Solar Research Program - Tata Trusts
  2. Tata Group [UF150033]
  3. George and Lilian Schiff Studentship
  4. Winton Studentship
  5. Engineering and Physical Sciences Research Council (EPSRC)
  6. Cambridge Trust
  7. Robert Gardiner
  8. Impuls-and Vernetzungsfonds der Helmholtz Gemeinschaft
  9. ONR [N00014-17-1-2201]
  10. University of Washington Molecular Engineering Materials Center (MEMC) NSF [DMR-1719797]

Ask authors/readers for more resources

The success of halide perovskites in a host of optoelectronic applications is often attributed to their long photoexcited carrier lifetimes, which has led to charge-carrier recombination processes being described as unique compared to other semiconductors. Here, we integrate recent literature findings to provide a critical assessment of the factors we believe are most likely controlling recombination in the most widely studied halide perovskite systems. We focus on four mechanisms that have been proposed to affect measured charge carrier recombination lifetimes, namely: (1) recombination via trap states, (2) polaron formation, (3) the indirect nature of the bandgap (e.g., Rashba effect), and (4) photon recycling. We scrutinize the evidence for each case and the implications of each process on carrier recombination dynamics. Although they have attracted considerable speculation, we conclude that multiple trapping or hopping in shallow trap states, and the possible indirect nature of the bandgap (e.g., Rashba effect), seem to be less likely given the combined evidence, at least in high-quality samples most relevant to solar cells and light-emitting diodes. On the other hand, photon recycling appears to play a clear role in increasing apparent lifetime for samples with high photoluminescence quantum yields. We conclude that polaron dynamics are intriguing and deserving of further study. We highlight potential interdependencies of these processes and suggest future experiments to better decouple their relative contributions. A more complete understanding of the recombination processes could allow us to rationally tailor the properties of these fascinating semiconductors and will aid the discovery of other materials exhibiting similarly exceptional optoelectronic properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available