4.5 Article

Rejuvenation of chicory and lettuce plants following phase change in tissue culture

Journal

BMC BIOTECHNOLOGY
Volume 19, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12896-019-0557-z

Keywords

Cichorium intybus; Chicory; Lactuca sativa; Lettuce; Compositae; In vitro flowering; Rejuvenation; Plant tissue culture

Ask authors/readers for more resources

Background A frequent problem associated with the tissue culture of Compositae species such as chicory (Cichorium intybus L.) and lettuce (Lactuca sativa L.) is the premature bolting to in vitro flowering of regenerated plants. Plants exhibiting such phase changes have poor survival and poor seed set upon transfer from tissue culture to greenhouse conditions. This can result in the loss of valuable plant lines following applications of cell and tissue culture for genetic manipulation. Results This study demonstrates that chicory and lettuce plants exhibiting stable in vitro flowering can be rejuvenated by a further cycle of adventitious shoot regeneration from cauline leaves. The resulting rejuvenated plants exhibit substantially improved performance following transfer to greenhouse conditions, with increased frequency of plant survival, a doubling of the frequency of plants that flowered, and substantially increased seed production. Conclusion As soon as in vitro flowering is observed in unique highly-valued chicory and lettuce lines, a further cycle of adventitious shoot regeneration from cauline leaves should be implemented to induce rejuvenation. This re-establishes a juvenile phase accompanied by in vitro rosette formation, resulting in substantially improved survival, flowering and seed set in a greenhouse, thereby ensuring the recovery of future generations from lines genetically manipulated in cell and tissue culture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available