4.8 Article

Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake

Journal

BMC BIOLOGY
Volume 17, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12915-019-0688-7

Keywords

Soda lake; Haloalkaliphiles; Metagenomics; Metatranscriptomics; Thiosulfate; Tetrathionate; Polysulfide; Woesearchaeota; Gemmatimonadetes; Nitrogen fixation

Categories

Funding

  1. ERC Advanced Grant PARASOL [322551]
  2. Czech Academy of Sciences (Postdoc program PPPLZ) [L200961651]
  3. Grant Agency of the Czech Republic [17-04828S]
  4. Czech Academy of Sciences [MSM200961801]
  5. SYAM-Gravitation Program of the Dutch Ministry of Education and Science [24002002]
  6. Russian Foundation for Basic Research [RFBR 19-04-00401]
  7. Russian Ministry of Science and Higher Education

Ask authors/readers for more resources

Background The planetary sulfur cycle is a complex web of chemical reactions that can be microbial-mediated or can occur spontaneously in the environment, depending on the temperature and pH. Inorganic sulfur compounds can serve as energy sources for specialized prokaryotes and are important substrates for microbial growth in general. Here, we investigate dissimilatory sulfur cycling in the brine and sediments of a southwestern Siberian soda lake characterized by an extremely high pH and salinity, combining meta-omics analyses of its uniquely adapted highly diverse prokaryote communities with biogeochemical profiling to identify key microbial players and expand our understanding of sulfur cycling under haloalkaline conditions. Results Peak microbial activity was found in the top 4 cm of the sediments, a layer with a steep drop in oxygen concentration and redox potential. The majority of sulfur was present as sulfate or iron sulfide. Thiosulfate was readily oxidized by microbes in the presence of oxygen, but oxidation was partially inhibited by light. We obtained 1032 metagenome-assembled genomes, including novel population genomes of characterized colorless sulfur-oxidizing bacteria (SOB), anoxygenic purple sulfur bacteria, heterotrophic SOB, and highly active lithoautotrophic sulfate reducers. Surprisingly, we discovered the potential for nitrogen fixation in a new genus of colorless SOB, carbon fixation in a new species of phototrophic Gemmatimonadetes, and elemental sulfur/sulfite reduction in the Candidatus Woesearchaeota. Polysulfide/thiosulfate and tetrathionate reductases were actively transcribed by various (facultative) anaerobes. Conclusions The recovery of over 200 genomes that encoded enzymes capable of catalyzing key reactions in the inorganic sulfur cycle indicates complete cycling between sulfate and sulfide at moderately hypersaline and extreme alkaline conditions. Our results suggest that more taxonomic groups are involved in sulfur dissimilation than previously assumed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available