4.7 Article

Nonlinear time domain and stability analysis of beams under partially distributed follower force

Journal

APPLIED MATHEMATICAL MODELLING
Volume 73, Issue -, Pages 303-326

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2019.04.031

Keywords

Partially distributed follower force; Nonlinear dynamic analysis; Geometrically exact beam formulation

Ask authors/readers for more resources

This paper aims to investigate linear and nonlinear behavior of beams subjected to externally applied partially distributed follower forces. In this investigation, the nonlinear composite beam theory of Hodges is used. The system of nonlinear equations is linearized about the equilibrium, or rest structure state, and the linear system is solved numerically. The effects of follower force position on the behavior of eigenvalues at pre- and post-instability are reported. Additionally, the contours of critical follower force are obtained by changing the position of follower force in span-wise and chord-wise directions. The effects of different parameters such as the length, and position of follower force and the ratios of stiffnesses on the critical follower force as well as the nonlinear limit cycle oscillation (LCO) are reported. The obtained results indicate that the length and the position of the partially distributed follower forces considerably affect the stability of the beam. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available