4.7 Article

Parkin Regulates Programmed Necrosis and Myocardial Ischemia/Reperfusion Injury by Targeting Cyclophilin-D

Journal

ANTIOXIDANTS & REDOX SIGNALING
Volume 31, Issue 16, Pages 1177-1193

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2019.7734

Keywords

Parkin; CypD; mPTP; programmed necrosis; myocardial ischemia; reperfusion injury

Ask authors/readers for more resources

Aims: Cardiomyocyte death critically contributes to the pathogenesis of cardiac disorders, such as myocardial infarction, heart failure, and cardiac ischemia/reperfusion (I/R) injury. As one of the main forms of cardiac cell death, necrosis plays a critical role in heart diseases. Multiple signaling pathways of necrosis have been demonstrated, in which death receptors, receptor-interacting serine/threonine-protein 1 and 3 kinases, and cyclophilin-D (CypD) have been deeply implicated. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondrial permeability transition pore (mPTP)-CypD-dependent death pathway, is poorly understood. Parkin functions as an E3 ubiquitin protein ligase that mainly mediates mitophagy cascades. As yet, it is not clear whether Parkin participates in regulating necrosis and myocardial I/R injury. Results: Here, our results showed that Parkin mediated mitophagy and inhibited necrosis under oxidative stress. In further exploring the underlying mechanisms, we found that Parkin suppressed mPTP opening by catalyzing the ubiquitination of CypD in necrotic cascades, which were not involved in Parkin-regulated mitophagy. Parkin inhibited necrosis, reduced myocardial I/R injury, and improved cardiac function. Innovation: Our present work reveals a highlighted connection between the mitochondrial matrix-localized Parkin and the mPTP-CypD-dependent necrotic signaling pathway in cardiac injury. Conclusion: Our results revealed a novel myocardial necrotic regulating model composed of Parkin, CypD, and mPTP, which may provide potential therapeutic targets and strategies to modulate the levels of these molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available