4.3 Article

Corrosion behavior of X65 steel in CO2-saturated oil/water environment of gathering and transportation pipeline

Journal

ANTI-CORROSION METHODS AND MATERIALS
Volume 66, Issue 5, Pages 671-682

Publisher

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/ACMM-02-2019-2081

Keywords

SEM; Crude oil; CO2 corrosion; XRD; X65 steel; Corrosion scales

Funding

  1. National Natural Science Foundation of China [51301201]
  2. National Science and Technology Major Project of China [2011ZX 05017-004]

Ask authors/readers for more resources

Purpose The purpose of this paper is to investigate the corrosion behavior of X65 steel in the CO2-saturated oil/water environment using mass loss method, potentiodynamic polarization technique and characterization of the corroded surface techniques. Design/methodology/approach The weight loss analysis, electrochemical study and surface investigation were carried out on X65 steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behavior of gathering and transportation pipeline steel. The weight loss tests were carried out in a 3 L autoclave, and effects of water cut and temperature on the CO2 corrosion rate of X65 steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature was 60 degrees C, and the CO2 partial pressure was 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using x-ray diffraction. Findings The results showed that due to the wetting and adsorption of crude oil, the corrosion morphology of X65 steel changed under different water cuts. When the water cut of crude oil was 40-50 per cent, uniform corrosion occurred on the steel surface, accompanied by local pitting. While the water cut was 70-80 per cent, the resulting corrosion product scales were thick, loose and partial shedding caused platform corrosion. When the water cut was 90 per cent, the damaged area of platform corrosion was enlarged. Crude oil can hinder the corrosion scales from being dissolved by the corrosive medium, and change dimension and accumulation pattern of the crystal grain, thickness and structure of the corrosion scales. Under the corrosion inhibition effect of crude oil, the temperature sensitive point of X65 steel corrosion process moved to low temperature, appeared at about 50 degrees C, lower corrosion rate interval was broadened and the corrosion resistance of X65 steel was enhanced. Originality/value The results can be helpful in selecting the applicable corrosion inhibitors and targeted anti-corrosion measures for CO2-saturated oil/water corrosive environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available