4.8 Article

Genetically Encoded, Photostable Indicators to Image Dynamic Zn2+ Secretion of Pancreatic Islets

Journal

ANALYTICAL CHEMISTRY
Volume 91, Issue 19, Pages 12212-12219

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b01802

Keywords

-

Funding

  1. UVA LaunchPad for Diabetes Program
  2. National Institute of General Medical Sciences of the National Institutes of Health [R01GM118675, R01GM129291]

Ask authors/readers for more resources

As an essential element for living organisms, zinc (Zn2+) exerts its biological functions both intracellularly and extracellularly. Previous studies have reported a number of genetically encoded Zn2+ indicators (GEZIs), which have been widely used to monitor Zn2+ in the cytosol and intracellular organelles. However, it is challenging to localize existing GEZIs to the extracellular space to detect secreted Zn2+. Herein, we report two photostable, green fluorescent protein (GFP) based indicators, ZIBG1 and ZIBG2, which respond to Zn2+ selectively and have affinities suited for detecting Zn2+ secretion from intracellular vesicles. In particular, ZIBG2 can be effectively targeted to the extracellular side of plasma membrane. We applied cell surface-localized ZIBG2 to monitor glucose-induced dynamic Zn2+ secretion from mouse insulinoma MIN6 cells and primary mouse and human pancreatic islets. Because Zn2+ is co-released with insulin from beta-cells, the fluorescence of cell surface-localized ZIBG2 was shown to be a strong indicator for the functional potency of islets. Our work here has thus expanded the use of GEZIs to image dynamic Zn2+ secretion in live tissue. Because it is convenient to use genetically encoded indicators for expression over extended periods and for in vivo delivery, we envision future applications of ZIBG2 in development of induced beta-cells or islets to advance cell replacement therapies for diabetes and in direct imaging of Zn2+ secretion dynamics in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available