4.7 Article

Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk

Journal

ANALYTICA CHIMICA ACTA
Volume 1093, Issue -, Pages 93-105

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2019.09.043

Keywords

Reduced graphene oxide; Molybdenum disulfide; Poly (3, 4-ethylene dioxythiophene); Nanocomposite; Electrochemical sensors; Nitrite

Funding

  1. DST-SERB, New Delhi [EMR/2015/001475]
  2. University Grants Commission (UGC), New Delhi [F.24e51/2014-U]

Ask authors/readers for more resources

The detrimental effect of (NO2-) on environment, a sensitive and selective detection of nitrite (NO2-) ions with point-to-care device is need to be fabricated. Herein, we report the non-enzymatic nitrite sensor using a novel reduced graphene oxide/molybdenum disulfide/poly (3, 4-ethylene dioxythiophene) (rGO/MoS2/PEDOT) nanocomposite electrode. The rGO/MoS2/PEDOT nanocomposite was synthesized using facile and cost-effective hydrothermal and polymerization approaches. The characteristics of rGO-MoS2-PEDOT nanocomposite was investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analyses. The rGO-MoS2-PEDOT nanocomposite modified glassy carbon electrode (GCE) was directly used for electrocatalytic detection of nitrite ions present in the solution. TEM images show the PEDOT nanoparticles with an average size of 100-120 nm are uniformly covered on the outer face of rGO-MoS2 nanosheets. The interaction between the PEDOT and rGO-MoS(2 )is evidenced in the FTIR, XRD and XPS studies, and they produced synergistic effect, resulting enhanced electrocatalytic performance activity towards oxidation of nitrite. Under optimized conditions, the fabricated electrode exhibited remarkably good sensitivity (874.19 mu A mu M-1 cm(-2)), low detection limit (LOD) (0.059 mu M, S/N = 3), wide linear range (0.001-1 mM) of nitrite with desirable selectivity, long-term stability and reproducibility. Furthermore, the practical feasibility of the fabricated sensor is validated by the successful detection of nitrite ion in some water and milk samples with excellent correlation. Thus, feasible easier synthesis method was adopted first time to fabricate rGO-MoS2-PEDOT nanocomposite nitrite sensor in the milk and water samples with enhanced selectivity, sensitivity and LOD. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available