4.7 Article

Mesenchymal Stem Cells Attenuate NADPH Oxidase-Dependent High Mobility Group Box 1 Production and Inhibit Abdominal Aortic Aneurysms

Journal

ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY
Volume 36, Issue 5, Pages 908-918

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.116.307373

Keywords

aortic aneurysms, abdominal; HMGB1 protein; inflammation; interleukins; stem cells

Funding

  1. National Institute of Health [RO1 HL081629]

Ask authors/readers for more resources

Objective Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, smooth muscle activation, and matrix degradation. This study tests the hypothesis that macrophage-produced high mobility group box 1 (HMGB1) production is dependent on nicotinamide adenine dinucleotide phosphate oxidase (Nox2), which leads to increase in interleukin (IL)-17 production resulting in AAA formation and that treatment with human mesenchymal stem cells (MSCs) can attenuate this process thereby inhibiting AAA formation. Approach and Results Human aortic tissue demonstrated a significant increase in HMGB1 expression in AAA patients when compared with controls. An elastase-perfusion model of AAA demonstrated a significant increase in HMGB1 production in C57BL/6 (wild-type [WT]) mice, which was attenuated by MSC treatment. Furthermore, anti-HMGB1 antibody treatment of WT mice attenuated AAA formation, IL-17 production, and immune cell infiltration when compared with elastase-perfused WT mice on day 14. Elastase-perfused Nox2(-/y) mice demonstrated a significant attenuation of HMGB1 and IL-17 production, cellular infiltration, matrix metalloproteinase activity, and AAA formation when compared with WT mice on day 14. In vitro studies showed that elastase-treated macrophages from WT mice, but not from Nox2(-/y) mice, produced HMGB1, which was attenuated by MSC treatment. The production of macrophage-dependent HMGB1 involved Nox2 activation and superoxide anion production, which was mitigated by MSC treatment. Conclusions These results demonstrate that macrophage-produced HMGB1 leads to aortic inflammation and acts as a trigger for CD4(+) T-cell-produced IL-17 during AAA formation. HMGB1 release is dependent on Nox2 activation, which can be inhibited by MSCs leading to attenuation of proinflammatory cytokines, especially IL-17, and protection against AAA formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available