4.6 Article

Cholesterol lowering attenuates pressure overload-induced heart failure in mice with mild hypercholesterolemia

Journal

AGING-US
Volume 11, Issue 17, Pages 6872-6891

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/aging.102218

Keywords

heart failure; transverse aortic constriction; hypercholesterolemia; gene therapy; oxidative stress

Funding

  1. Onderzoekstoelagen grant of the KU Leuven [OT/13/090]
  2. Fonds voor Wetenschappelijk Onderzoek-Vlaanderen [G0A3114N]

Ask authors/readers for more resources

Epidemiological studies support a strong association between non-high-density lipoprotein cholesterol levels and heart failure incidence. The objective of the current study was to evaluate the effect of selective cholesterol lowering adeno-associated viral serotype 8 (AAV8)-mediated low-density lipoprotein receptor (LDLr) gene transfer on cardiac remodelling and myocardial oxidative stress following transverse aortic constriction (TAC) in female C57BL/6 LDLr-/- mice with mild hypercholesterolemia. Cholesterol lowering gene transfer resulted in a 65.9% (p<0.0001) reduction of plasma cholesterol levels (51.2 +/- 2.2 mg/dl) compared to controls (150 +/- 7 mg/dl). Left ventricular wall area was 11.2% (p<0.05) lower in AAV8-LDLr TAC mice than in control TAC mice. In agreement, pro-hypertrophic myocardial proteins were potently decreased in AAV8-LDLr TAC mice. The degree of interstitial fibrosis and perivascular fibrosis was 31.0% (p<0.001) and 29.8% (p<0.001) lower, respectively, in AAV8-LDLr TAC mice compared to control TAC mice. These structural differences were associated with improved systolic and diastolic function and decreased lung congestion in AAV8-LDLr TAC mice compared to control TAC mice. Cholesterol lowering gene therapy counteracted myocardial oxidative stress and preserved the potential for myocardial fatty acid oxidation in TAC mice. In conclusion, cholesterol lowering gene therapy attenuates pressure overload-induced heart failure in mice with mild hypercholesterolemia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available