4.8 Review

The Next Frontier in Melt Electrospinning: Taming the Jet

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 29, Issue 44, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201904664

Keywords

3D printing; additive manufacturing; electrohydrodynamic; melt electrospinning writing

Funding

  1. EACEA program BIOFAB [2013/3137 001-001]
  2. Volkswagen Stiftung [93417]
  3. ARC Industrial Transformation Training Centre in Additive Biomanufacturing [IC160100026]

Ask authors/readers for more resources

There is a specialized niche for the electrohydrodynamic jetting of melts, from biomedical products to filtration and soft matter applications. The next frontier includes optics, microfluidics, flexible electronic devices, and soft network composites in biomaterial science and soft robotics. The recent emphasis on reproducibly direct-writing continual molten jets has enabled a spectrum of contemporary microscale 3D objects to be fabricated. One strong suit of melt processing is the capacity for the jet to solidify rapidly into a fiber, thus fixing a particular structure into position. The ability to direct-write complex and multiscaled architectures and structures has greatly contributed to a large number of recent studies, explicitly, toward fiber-hydrogel composites and fugitive inks, and has expanded into several biomedical applications such as cartilage, skin, periosteum, and cardiovascular tissue engineering. Following the footsteps of a publication that summarized melt electrowriting literature up to 2015, the most recent literature from then until now is reviewed to provide a continuous and comprehensive timeline that demonstrates the latest advances as well as new perspectives for this emerging technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available