4.8 Review

Nanoscale Organic Thermoelectric Materials: Measurement, Theoretical Models, and Optimization Strategies

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 8, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201903873

Keywords

electronic transport; nanoscale organic materials; thermal transport; thermoelectric properties

Funding

  1. National Key Research and Development Program of China [2017YFB0701602]
  2. National Natural Science Foundation of China [11674092]

Ask authors/readers for more resources

The demands for waste heat energy recovery from industrial production, solar energy, and electronic devices have resulted in increasing attention being focused on thermoelectric materials. Over the past two decades, significant progress is achieved in inorganic thermoelectric materials. In addition, with the proliferation of wireless mobile devices, economical, efficient, lightweight, and bio-friendly organic thermoelectric (OTE) materials have gradually become promising candidates for thermoelectric devices used in room-temperature environments. With the development of experimental measurement techniques, the manufacturing for nanoscale thermoelectric devices has become possible. A large number of studies have demonstrated the excellent performance of nanoscale thermoelectric devices, and further improvement of their thermoelectric conversion efficiency is expected to have a significant impact on global energy consumption. Here, the development of experimental measurement methods, theoretical models, and performance modulation for nanoscale OTE materials are summarized. Suggestions and prospects for the future development of these devices are also provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available