4.1 Article

Cue recognition and behavioural responses in the three-spined stickleback (Gasterosteus aculeatus) under risk of fish predation

Journal

ACTA ETHOLOGICA
Volume 22, Issue 3, Pages 209-221

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10211-019-00324-8

Keywords

Predator; Multimodal cues; Anti-predation behaviour; Chemical cues; Alarm cues; Visual cues

Funding

  1. Spanish Ministry of Science and Innovation through the National Program for Fundamental Research [CGL 2009-07904]
  2. Swedish Research Council Formas

Ask authors/readers for more resources

To effectively respond to predation risk, prey must assess the risk associated with different predation cues. Predation cues can stem either from the predator or from conspecifics and indicate different predation risk levels, thus eliciting different anti-predation responses. The three-spined stickleback is a well-studied fish species often found in gregarious formations. Previous studies show that sticklebacks perform a variety of anti-predation behaviours; however, little is known about how they respond to multiple simultaneous predator cues, characteristic of heterogeneous natural habitats. Here, we experimentally compare the relative importance of three types of predation cues (visual predator cue, chemical predator odour cue and chemical alarm cue from injured conspecifics) and their interactions, on anti-predation and foraging behaviour of sticklebacks. Results showed that (1) individual sticklebacks responded most strongly to visual predator cues, which resulted in reduced foraging activity, increased spine erection and increased predator inspection; (2) the presence of chemical cues (predator odour and/or conspecific alarm cues) stimulates freezing behaviour to a minor extent; and (3) anti-predation behaviour manifests as a trade-off with foraging-related activities. Overall, the results indicate that sticklebacks could assess risk and modify their behavioural responses depending on which cues are present in the environment. The experimental approach of using factorial combinations of different predatory cues can increase our understanding of the role of multimodal cues in aquatic ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available