4.8 Article

Vitamin C Loaded Poly(urethane-urea)/ZnA-LDH Aligned Scaffolds Increase Proliferation of Corneal Keratocytes and Up-Regulate Vimentin Secretion

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 39, Pages 35525-35539

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b07556

Keywords

polyurethane-urea; vitamin C; layered double hydroxide; electrospun scaffold; corneal stromal regeneration; drug loaded LDH

Ask authors/readers for more resources

A novel poly(urethane-urea) (PUU) based on poly(glycolide-co-epsilon-caprolactone) macro-diol with tunable mechanical properties and biodegradation behavior is reported for corneal stromal tissue regeneration. Zn-Al layered double hydroxide (LDH) nanoparticles were synthesized and loaded with vitamin C (VC, VC-LDH) and dispersed in the PUU to control VC release in the cell culturing medium. To mimic the corneal stromal EC, scaffolds of the PUU and its nanocomposites with VC-LDH (PUU-LDH and PUU-VC-LDH) were fabricated via electrospinning. Average diameters of the aligned nanofibers were recorded as 325 +/- 168, 343 +/- 171, and 414 +/- 275 nm for the PUU, PUU-LDH, and PUU-VC-LDH scaffolds, respectively. Results of hydrophilicity and mechanical properties measurements showed increased hydrophobicity and reduced tensile strength and elongation at break upon addition of nanoparticles to the PUU scaffold. VC release studies represented that intercalation of the drug in Zn-Al-LDH controlled the burst release and extended the release period from a few hours to 5 days. Viability and proliferation of stromal keratocyte cells on the scaffolds were investigated via AlamarBlue assay. After 24 h, the cells showed similar viability on the scaffolds and the control. After 1 week, the cells showed some degree of proliferation on the scaffolds, with the highest value recorded for PUU-VC-LDH. SEM images of the scaffolds after 24 h and 1 week confirmed good penetration and attachment of keratocytes on all the scaffolds and the cells oriented with the direction of nanofibers. After 1 week, the PUU-VC-LDH scaffold was fully covered by the cells. Immunocytochemistry assay (ICC) was performed to investigate secretion of vimentin protein, ALDH3A1, and alpha-SMA by the cells. After 24h and 1 week, remarkably higher levels of vimentin and ALDH3A1 and lower level of alpha-SMA were secreted by keratocytes on PUU-VC-LDH compared to those on the PUU and PUU-LDH scaffolds and the control. Our results suggest that the aligned PUU-VC-LDH is a promising candidate for corneal stromal tissue engineering due to the presence of zinc and vitamin C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available