4.8 Review

Heteroatom-Doped Nanographenes with Structural Precision

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 52, Issue 9, Pages 2491-2505

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.9b00322

Keywords

-

Funding

  1. Max Planck Society
  2. Alexander von Humboldt Foundation
  3. China Scholarship Council

Ask authors/readers for more resources

CONSPECTUS: Nanographenes, which are defined as nanoscale (1-100 nm) graphene cutouts, include quasi-one-dimensional graphene nanoribbons (GNRs) and quasi-zero-dimensional graphene quantum dots (GQDs). Polycyclic aromatic hydrocarbons (PAHs) larger than 1 nm can be viewed as GQDs with atomically precise molecular structures and can thus be termed nanographene molecules. As a result of quantum confinement, nanographenes are promising for next-generation semiconductor applications with finite band gaps, a significant advantage compared with gapless two-dimensional graphene. Similar to the atomic doping strategy in inorganic semiconductors, incorporation of heteroatoms into nanographenes is a viable way to tune their optical, electronic, catalytic, and magnetic properties. Such properties are highly dependent not only on the molecular size and edge structure but also on the heteroatom type, doping position, and concentration. Therefore, reliable synthetic methods are required to precisely control these structural features. In this regard, bottom-up organic synthesis provides an indispensable way to achieve structurally well-defined heteroatom-doped nanographenes. Polycyclic heteroaromatic compounds have attracted great attention of organic chemists for decades. Research in this direction has been further promoted by modern interest in supramolecular chemistry and organic electronics. The rise of graphene in the 21st century has endowed large polycyclic heteroaromatic compounds with a new role as model systems for heteroatom-doped graphene. Heteroatom-doped nanographene molecules are in their own right promising materials for photonic, optoelectronic, and spintronic applications because of the extended pi conjugation. Despite the significant advances in polycyclic heteroaromatic compounds, heteroatom-doped nanographene molecules with sizes of over 1 nm and their relevant GNRs are still scarce. In this Account, we describe the synthesis and properties of large heteroatom-doped nanographenes, mainly summarizing relevant advances in our group in the past decade. We first present several examples of heteroatom doping based on the prototypical nanographene molecule, i.e., hexa-peri-hexabenzocoronene (HBC), including nitrogen-doped HBC analogues by formal replacement of benzene with other heterocycles (e.g., aromatic pyrimidine and pyrrole and antiaromatic pyrazine) and sulfur-doped nanographene molecules via thiophene annulation. We then introduce heteroatom-doped zigzag edges and a variety of zigzag-edged nanographene molecules incorporating nitrogen, boron, and oxygen atoms. We finally summarize heteroatom-doped GNRs based on the success in the molecular cases. We hope that this Account will further stimulate the synthesis and applications of heteroatom-doped nanographenes with a combined effort from different disciplines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available