4.7 Review

Polymer composite for antistatic application in aerospace

Journal

DEFENCE TECHNOLOGY
Volume 16, Issue 1, Pages 107-118

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.dt.2019.04.008

Keywords

Static discharge system; Nanocomposite; Anti-static materials; Electromagnetic interference; Aerospace applications

Ask authors/readers for more resources

The phenomenon of static electricity is unpredictable, particularly when an aircraft flying at high altitude that causes the accumulation of static charges beyond a threshold value leading to the failure of its parts and systems including severe explosion and radio communication failure. The accumulation of static charges on aircraft is generated by the virtue of interaction between the outer surface of aircraft and the external environmental attributes encompasses air particles, ice, hail, dust, volcanic ash in addition to its triboelectric charging. In the recent years, advanced polymer-based composites or nanocomposites are preferred structural constituents for aircrafts due to their light weight and comparable mechanical properties, but such composite systems do not render low impedance path for charge flow and are subsequently vulnerable to effect of lightning strike and precipitation static. In this context, it is essential to develop conductive composite systems from non-conductive polymermatrix by nanofiller embodiments. The advent of carbon-based nanocomposite/nanomaterials have adequately addressed such issues related to the nonconductive polymer matrix and further turned into an avant-garde genre of materials. The current review envisioned to illustrate the detailed exploitation of various polymer nanocomposites in addition to especially mentioned epoxy composites based on carbon fillers like carbon black, carbon nanotube (single walled carbon nanotube and multiwalled carbon nanotube) and graphene the development of antistatic application in aircraft in addition to the static charge phenomenon and condition for its prevalence in avionic systems. (C) 2020 China Ordnance Society. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available