4.6 Article

Reactivity of Bioinspired Magnesium-Organic Networks under CO2 and O2 Exposure

Journal

ACS OMEGA
Volume 4, Issue 6, Pages 9850-9859

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b00762

Keywords

-

Funding

  1. Spanish Ministerio de Ciencia e Innovacion [FIS2016-75862-P]

Ask authors/readers for more resources

Photosynthesis is the model system for energy conversion. It uses CO2 as a starting reactant to convert solar energy into chemical energy, i.e., organic molecules or biomass. The first and rate-determining step of this cycle is the immobilization and activation of CO2, catalyzed by RuBisCO enzyme, the most abundant protein on earth. Here, we propose a strategy to develop novel biomimetic two-dimensional (2D) nanostructures for CO2 adsorption at room temperature by reductionist mimicking of the Mg-carboxylate RuBisCO active site. We present a method to synthesize a 2D surface-supported system based on Mg2+ centers stabilized by a carboxylate environment and track their structural dynamics and reactivity under either CO2 or O-2 exposure at room temperature. The CO2 molecules adsorb temporarily on the Mg2+ centers, producing a charge imbalance that catalyzes a phase transition into a different configuration, whereas O-2 adsorbs on the Mg2+ center, giving rise to a distortion in the metal-organic bonds that eventually leads to the collapse of the structure. The combination of bioinspired synthesis and surface reactivity studies demonstrated here for Mg-based 2D ionic networks holds promise for the development of new catalysts that can work at room temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available