4.6 Article

CsPbBr3 Perovskite Powder, a Robust and Mass-Producible Single-Source Precursor: Synthesis, Characterization, and Optoelectronic Applications

Journal

ACS OMEGA
Volume 4, Issue 5, Pages 8081-8086

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b00385

Keywords

-

Funding

  1. Ministry of Science and Technology of Taiwan, ROC
  2. MOST [107-2221-E-143-005]

Ask authors/readers for more resources

A facile synthesis method is proposed for the mass production of high-quality CsPbBr3 perovskite powder. It is shown that the proposed synthesis protocol is capable of producing polycrystalline CsPbBr3 powder in quantities greater than 10 g. The derived thin films by thermal evaporation and spin-coating are of compact morphologies (root-mean-square roughness < 4 nm) without voids and pinholes. Moreover, the thin films show obvious photoluminescence (PL) with a narrow (bandwidth < 19 nm) peak centered at similar to 520 nm, which is blue-shifted compared with the PL emission of the powder at 542 nm. The powder and the spin-coated film exhibit superior PL stability under long-term ambient conditions and in thermal cycling experiments performed at temperatures up to similar to 120 degrees C. Accordingly, optoelectronic applications including the fabrication and characteristics of the electroluminescence device, the organic-inorganic powder doped with methylammonium and formamidinium ions, and fluorescent greenish-blue quantum dots are also demonstrated. On the basis of these demonstrations, the synthesized CsPbBr3 perovskite powder can be expected to empower the advances in perovskite-related optoelectronics in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available