4.6 Article

Epitope targeting with self-assembled peptide vaccines

Journal

NPJ VACCINES
Volume 4, Issue -, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s41541-019-0125-5

Keywords

-

Funding

  1. National Institutes of Health [UH2DA041162]

Ask authors/readers for more resources

Nanoparticle-based delivery systems are being used to simplify and accelerate new vaccine development. Previously, we described the solid-phase synthesis of a 61-amino acid conjugate vaccine carrier comprising a alpha-helical domain followed by two universal T cell epitopes. Circular dichroism, analytical centrifugation, and dynamic light scattering indicate that this carrier forms coiled-coil nanoparticles. Here we expand the potential of this carrier by appending B cell epitopes to its amino acid sequence, thereby eliminating the need for traditional conjugation reactions. Peptides containing Tau or amyloid-beta epitopes at either terminus assemble into similar to 20 nm particles and induce antibody responses in outbred mice. Vaccine function was verified in three experiments. The first targeted gonadotropin-releasing hormone, a 10-amino acid neuropeptide that regulates sexual development. Induction of peak antibody titers in male mice stimulated a dramatic loss in fertility and marked testis degeneration. The second experiment generated antibodies to an epitope on the murine IgE heavy chain analogous to human IgE sequence recognized by omalizumab, the first monoclonal antibody approved for the treatment of allergic asthma. Like omalizumab, the anti-IgE antibodies in immunized mice reduced the concentrations of circulating free IgE and prevented IgE-induced anaphylaxis. Finally, a peptide containing the highly conserved Helix A epitope within the influenza hemagglutinin stem domain induced antibodies that successfully protected mice against a lethal H1N1 challenge. These results establish the utility of a new vaccine platform for eliciting prophylactic and therapeutic antibodies to linear and helical B cell epitopes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available