4.7 Review

Drug Inducible CRISPR/Cas Systems

Journal

COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL
Volume 17, Issue -, Pages 1171-1177

Publisher

ELSEVIER
DOI: 10.1016/j.csbj.2019.07.015

Keywords

-

Funding

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA16010504]
  2. National Basic Research Program of China [2015CB964800]
  3. National Natural Science Foundation of China [31701280, 31571514]

Ask authors/readers for more resources

Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems have been employed as a powerful versatile technology for programmable gene editing, transcriptional modulation, epigenetic modulation, and genome labeling, etc. Yet better control of their activity is important to accomplish greater precision and to reduce undesired outcomes such as off-target events. The use of small molecules to control CRISPR/Cas activity represents a promising direction. Here, we provide an updated review on multiple drug inducible CRISPR/Cas systems and discuss their distinct properties. We arbitrarily divided the emerging drug inducible CRISPR/Cas systems into two categories based on whether at transcription or protein level does chemical control occurs. The first category includes Tet-On/Off system and Cre-dependent system. The second category includes chemically induced proximity systems, intein splicing system, 4-Hydroxytamoxifen-Estrogen Receptor based nuclear localization systems, allosterically regulated Cas9 system, and destabilizing domain mediated protein degradation systems. Finally, the advantages and limitations of each system were summarized. (C) 2019 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available