4.8 Article

Ultrafast correlated charge and lattice motion in a hybrid metal halide perovskite

Journal

SCIENCE ADVANCES
Volume 5, Issue 5, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aaw5558

Keywords

-

Funding

  1. NSERC
  2. CFI
  3. FQRNT
  4. U.S. DOE, Office of Science [SC0012541]

Ask authors/readers for more resources

Hybrid organic-inorganic halide perovskites have shown remarkable optoelectronic properties, exhibiting an impressive tolerance to defects believed to originate from correlated motion of charge carriers and the polar lattice forming large polarons. Few experimental techniques are capable of directly probing these correlations, requiring simultaneous sub-millielectron volt energy and femtosecond temporal resolution after absorption of a photon. Here, we use time-resolved multi-THz spectroscopy, sensitive to the internal excitations of the polaron, to temporally and energetically resolve the coherent coupling of charges to longitudinal optical phonons in single-crystal CH3NH3PbI3 (MAPI). We observe room temperature intraband quantum beats arising from the coherent displacement of charge from the coupled phonon cloud. Our measurements provide strong evidence for the existence of polarons in MAPI at room temperature, suggesting that electron/hole-phonon coupling is a defining aspect of the hybrid metal-halide perovskites contributing to the protection from scattering and enhanced carrier lifetimes that define their usefulness in devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available