4.6 Article

Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries

Journal

ACS ENERGY LETTERS
Volume 4, Issue 7, Pages 1584-1593

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.9b00822

Keywords

-

Funding

  1. King Abdullah University of Science and Technology (KAUST)

Ask authors/readers for more resources

It is commonly believed that the formation of a solid-electrolyte interphase (SEI) is the main reason for improved electrode performance in rechargeable batteries. However, herein we present a new interfacial model that may change the thinking about the role of SEI, which has prevailed over the past 2 decades. We show that the varied desolvation behavior of mobile ions, which depends on the solvation structure determined by multiple factors (e.g., cations, solvent, anions, and additives) is a critical factor for electrode stability besides the SEI. This interfacial model can predict the intercalating species in graphite electrodes (i.e., Li+ (de)intercalation or Li+-solvent co-insertion) in different types of electrolytes (e.g., carbonate-, ether-based electrolyte). The generality of our model is further demonstrated by its ability to interpret the variable lithium plating/stripping in different electrolytes. Our model can predict electrode performance through the proposed cation-solvent interactions and desolvation behaviors and then help develop new types of electrolytes for mobile (ion) batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available