4.6 Article

Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules

Journal

ACS ENERGY LETTERS
Volume 4, Issue 8, Pages 1862-1871

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.9b01151

Keywords

-

Funding

  1. European Union [696656, 785219]
  2. Ministry of Education and Science of the Russian Federation [K3-2018-035]

Ask authors/readers for more resources

In this work, we demonstrate the successful application of two-dimensional (2D) materials, i.e., graphene and functionalized MoS2, in perovskite solar cells (PSCs) by interface engineering the standard mesoscopic n-i-p structure. The use of 2D materials has the dual role to improve both the stability and the overall power conversion efficiency (PCE) of the PSCs compared to standard devices. The application of 2D materials is successfully extended to large-area perovskite solar modules (PSMs), achieving PCEs of 13.4% and 15.3% on active areas of 108 cm(2) and 82 cm(2), respectively. This performance results in record-high active area-indexed aperture PCE (AIAPCE) of 1266.5% cm(2). In addition, the 2D materials-based PSMs show a stability under a prolonged (>1000 h) thermal stress test at 65 degrees C (ISOS-D2), representing a crucial advancement in the exploitation of perovskite photovoltaic technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available