4.5 Article

On the Balance Between Plasma and Magnetic Pressure Across Equatorial Plasma Depletions

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
Volume 124, Issue 7, Pages 5936-5944

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019JA026700

Keywords

equatorial plasma depletions; spread F; plasma pressure; magnetic pressure; diamagnetic currents

Funding

  1. German Research Foundation (DFG) [(SPP) 1788]
  2. Humboldt Research Fellowship for Experienced Researchers from the Alexander von Humboldt Foundation
  3. DFG [SPP 1788, CH 1482/1-1]

Ask authors/readers for more resources

In magnetized plasmas such as the ionosphere, electric currents develop in regions of strong density gradients to balance the resulting plasma pressure gradients. These currents, usually known as diamagnetic currents decrease the magnetic pressure where the plasma pressure increases, and vice versa. In the low-latitude ionosphere, equatorial plasma depletions (EPDs) are well known for their steep plasma density gradients and adverse effect on radio wave propagation. In this paper, we use continuous measurements of the magnetic field and electron density from the European Space Agency's Swarm constellation mission to assess the balance between plasma and magnetic pressure across large-scale EPDs. The analysis is based on the magnetic fluctuations related to diamagnetic currents flowing at the edges of EPDs. This study shows that most of the EPDs detected by Swarm present a decrease of the plasma pressure relative to the ambient plasma. However, EPDs with high plasma pressure are also identified mainly in the vicinity of the South Atlantic magnetic anomaly. From the electron density measurements, we deduce that such an increase in plasma pressure within EPDs might be possible by temperatures inside the EPD as high as twice the temperature of the ambient plasma. Due to the distinct location of the high-pressure EPDs, we suggest that a possible heating mechanism might be due to precipitation of particle from the radiation belts. This finding corresponds to the first observational evidence of plasma pressure enhancements in regions of depleted plasma density in the ionosphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available