4.6 Article

Evaluating Ammonia (NH3) Predictions in the NOAA NAQFC for Eastern North Carolina Using Ground Level and Satellite Measurements

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 124, Issue 14, Pages 8242-8259

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018JD029990

Keywords

NH3; ammonia; model evaluation; CMAQ; remote sensing

Funding

  1. NASA Earth and Space Science Fellowship (NESSF) program [NNX15AN15H]
  2. Kenan Fund
  3. NASA [NNX15AN15H, 805770] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Ammonia (NH3) in the atmosphere contributes to the formation of airborne fine particulate matter (PM2.5), which is associated with adverse human health effects. The emission, transport, reactions, and deposition of NH3 in the atmosphere are modeled using the Community Multiscale Air Quality (CMAQ) model, within the U.S. National Air Quality Forecast Capability (NAQFC). The purpose of this current work is to evaluate the capability of the NAQFC CMAQ model and to identify potential improvements to NH3 emissions estimates and prediction methods. This study focuses on CMAQ predictions of atmospheric NH3 in North Carolina, including a region with intensive animal production and enhanced NH3 emissions. The CMAQ model is run for July 2011 using a version of the 2011 National Emissions Inventory in which agricultural NH3 emissions were adjusted to reflect the lower end of the range of estimates from the current process-based emissions model. The NAQFC CMAQ model overpredicted atmospheric NH3 at a continuous monitor in Clinton, NC, within the region of intensive animal production. The average concentration measured by the monitor was 6.6 ppbv, while the average predicted by the model was 10.5 ppbv, a 60% overprediction. Outside of the region of intensive animal production, both measured and modeled NH3 concentrations were low, 1.3 ppbv or less. The model underpredicted wet deposition of NH4+ and dry deposition of NH3. It is believed that the overestimation of NH3 at Clinton is attributable at least in part to the underestimation of wet and dry deposition in North Carolina.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available