4.8 Article

Molecular game theory for a toxin-dominant food chain model

Journal

NATIONAL SCIENCE REVIEW
Volume 6, Issue 6, Pages 1191-1200

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nsr/nwz097

Keywords

toxin; receptor; molecular game; amphibian; scorpion

Funding

  1. National Natural Science Foundation of China (NSFC) [31930015]
  2. Chinese Academy of Sciences [XDB31000000, SAJC201606]
  3. NSFC [31770835]
  4. CAS 'Light of West China' Program
  5. Yunnan Province [2018FA003, 2017FA037]
  6. National Natural Science Foundation of China [31741067, 31800990]

Ask authors/readers for more resources

Animal toxins that are used to subdue prey and deter predators act as the key drivers in natural food chains and ecosystems. However, the predators of venomous animals may exploit feeding adaptation strategies to overcome toxins their prey produce. Much remains unknown about the genetic and molecular game process in the toxin-dominant food chain model. Here, we show an evolutionary strategy in different trophic levels of scorpion-eating amphibians, scorpions and insects, representing each predation relationship in habitats dominated by the paralytic toxins of scorpions. For scorpions preying on insects, we found that the scorpion alpha-toxins irreversibly activate the skeletal muscle sodium channel of their prey (insect, BgNa(V)1) through a membrane delivery mechanism and an efficient binding with the Asp/Lys-Tyr motif of BgNa(V)1. However, in the predatory game between frogs and scorpions, with a single point mutation (Lys to Glu) in this motif of the frog's skeletal muscle sodium channel (fNa(V)1.4), fNa(V)1.4 breaks this interaction and diminishes muscular toxicity to the frog; thus, frogs can regularly prey on scorpions without showing paralysis. Interestingly, this molecular strategy also has been employed by some other scorpion-eating amphibians, especially anurans. In contrast to these amphibians, the Asp/Lys-Tyr motifs are structurally and functionally conserved in other animals that do not prey on scorpions. Together, our findings elucidate the protein-protein interacting mechanism of a toxin-dominant predator-prey system, implying the evolutionary game theory at a molecular level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available