4.6 Article

Resonant-XRD Characterization of Nanoalloyed Au-Pd Catalysts for the Direct Synthesis of H2O2: Quantitative Analysis of Size Dependent Composition of the Nanoparticles

Journal

APPLIED SCIENCES-BASEL
Volume 9, Issue 15, Pages -

Publisher

MDPI
DOI: 10.3390/app9152959

Keywords

hydrogen peroxide; anomalous diffraction; palladium; gold

Ask authors/readers for more resources

The focus of this work is on the relationship between the quantitative structural characterization of bimetallic Au-Pd nanoparticles dispersed in an amorphous polymer matrix and their catalytic activity in the direct synthesis of hydrogen peroxide (DS reaction). Resonant X-ray powder diffraction with synchrotron radiation was employed to probe selectively and to reveal fine details of the structure of bimetallic nanoparticles embedded in the support. The semi-quantitative analysis of the resonant X-ray powdered diffraction data, made on a large number of metal nanoparticles, shows that in one of the polymer-supported Au-Pd catalyst for the DS reaction (P75) featured by an overall molar Pd/Au of about 5.54, the smallest metal nanoparticles (MNPs), which account for more than 99.9% of the total MNPs number and for more than 95% of the metal surface, are formed by practically pure palladium. The relative number of bimetallic alloyed nanoparticles is very small (less than 4 x 10(2) ppm) and they contribute to only about 2% of the total metal surface. In a second gold-enriched catalyst (P50) with an overall molar Pd/Au of 1.84, the proportion of the bimetallic alloyed nanoparticles increased to about 97% and they account for about 99% of the metal surface. As a result of the metal intermixing, the catalytic productivity for the DS reaction increased from 97 to 109 mmol(H2)O(2)/mol(H2), owing to the gold-promotion of palladium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available