4.6 Article

Machine Learning-Based Dimension Optimization for Two-Stage Precoder in Massive MIMO Systems with Limited Feedback

Journal

APPLIED SCIENCES-BASEL
Volume 9, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/app9142894

Keywords

massive MIMO; machine learning; deep neural network; limited feedback; two-stage precoder; non-convex optimization

Funding

  1. Future Combat System Network Technology Research Center program of Defense Acquisition Program Administration
  2. Agency for Defense Development [UD160070BD]

Ask authors/readers for more resources

A two-stage precoder is widely considered in frequency division duplex massive multiple-input and multiple-output (MIMO) systems to resolve the channel feedback overhead problem. In massive MIMO systems, users on a network can be divided into several user groups of similar spatial antenna correlations. Using the two-stage precoder, the outer precoder reduces the channel dimensions mitigating inter-group interferences at the first stage, while the inner precoder eliminates the smaller dimensions of intra-group interferences at the second stage. In this case, the dimension of effective channel reduced by outer precoder is important as it leverages the inter-group interference, the intra-group interference, and the performance loss from the quantized channel feedback. In this paper, we propose the machine learning framework to find the optimal dimensions reduced by the outer precoder that maximizes the average sum rate, where the original problem is an NP-hard problem. Our machine learning framework considers the deep neural network, where the inputs are channel statistics, and the outputs are the effective channel dimensions after outer precoding. The numerical result shows that our proposed machine learning-based dimension optimization achieves the average sum rate comparable to the optimal performance using brute-forcing searching, which is not feasible in practice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available