4.7 Article

Giant reversible barocaloric response of (MnNiSi)1-x(FeCoGe)x (x=0.39, 0.40, 0.41)

Journal

APL MATERIALS
Volume 7, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5097959

Keywords

-

Funding

  1. MINECO [FIS2017-82625-P]
  2. AGAUR
  3. DGU Project [2017SGR-42]
  4. U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-FG02-13ER46946, DE-FG02-06ER46291]

Ask authors/readers for more resources

MnNiSi-based alloys and isostructural systems have traditionally demonstrated impressive magnetocaloric properties near room temperature associated with a highly tunable first-order magnetostructural transition that involves large latent heat. However, these materials are limited by a small field-sensitivity of the transition, preventing significant reversible effects usable for cooling applications. Instead, the concomitant large transition volume changes prompt a high pressure-sensitivity, and therefore, promise substantial barocaloric performances, but they have been sparsely studied in these materials. Here, we study the barocaloric response in a series of composition-related (MnNiSi)(1-x)(FeCoGe)(x) (x = 0.39, 0.40, 0.41) alloys that span continuously over a wide temperature range around ambient. We report on giant reversible effects of similar to 40 J K-1 kg(-1) and up to similar to 4 K upon application of similar to 2 kbar and find a degradation of the first-order transition properties with pressure that limits the barocaloric effects at high pressures. Our results confirm the potential of this type of alloys for barocaloric applications, where multicaloric and composite possibilities, along with the high density and relatively high thermal conductivity, constructively add to the magnitude of the caloric effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available