4.5 Article

Matrix Optimization on Universal Unitary Photonic Devices

Journal

PHYSICAL REVIEW APPLIED
Volume 11, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.11.064044

Keywords

-

Funding

  1. Air Force Office of Scientific Research [FA9550-181-1-0186]

Ask authors/readers for more resources

Universal unitary photonic devices can apply arbitrary unitary transformations to a vector of input modes and provide a promising hardware platform for fast and energy-efficient machine learning using light. We simulate the gradient-based optimization of random unitary matrices on universal photonic devices composed of imperfect tunable interferometers. If device components are initialized uniform randomly, the locally interacting nature of the mesh components biases the optimization search space toward banded unitary matrices, limiting convergence to random unitary matrices. We detail a procedure for initializing the device by sampling from the distribution of random unitary matrices and show that this greatly improves convergence speed. We also explore mesh architecture improvements such as adding extra tunable beam splitters or permuting waveguide layers to further improve the training speed and scalability of these devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available