4.8 Article

Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells

Journal

NANO ENERGY
Volume 61, Issue -, Pages 496-504

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2019.05.004

Keywords

NiOx based perovskite solar cell; Surface dipole; Light-soaking effect; Interface engineering; Defect density; Photothermal deflection spectroscopy

Funding

  1. National Natural Science Foundation of China [61574120]
  2. Guangdong province Natural Science Foundation of China [2015A030313001]
  3. Hong Kong Innovation and Technology Commission [ITS/186/16]

Ask authors/readers for more resources

Despite the success of solution processed nickel oxide (s-NiOx) as the hole transporting layer (HTL) in organic solar cells, applying s-NiOx in perovskite solar cells (PVSCs) is not that straight forward. The reported power conversion efficiencies (PCEs) of the s-NiOx based PVSCs span a wide range from 8% to over 20% even with a similar recipe. Here, we report that one of the causes for the performance discrepancy might be the large surface dipole on the s-NiOx surface. We find that the perovskite deposited on the as-prepared sol-gel derived s-NiOx has large number of defects at the s-NiOx/perovskite interface. Based on the in-depth mechanism study with various spectroscopy techniques, we propose that the strong surface dipole of the s-NiOx composite film induces adhesion of perovskite precursor ions on the surface of s-NiOx during the perovskite film formation and creates defects in the perovskite crystals at the interface. Such interfacial dipole-ion attachment has been demonstrated can be dissociated by ultraviolet (UV) light soaking experiment. The high energy of the UV light helps to dissociate the physical dipole-ion attachment and mobilize the ions to accommodate the perovskite defect sites. The defect density of the perovskite film on s-NiOx has been significantly reduced by an amount of 4.1 x 10(17) cm(-3) after the UV light soaking as evidenced by photothermal deflection spectroscopy (PDS) measurement. By treating the s-NiOx surface with a dipolar molecule n-Butylamine, the surface dipole of the s-NiOx film is efficiently reduced and it significantly reduces the defect density in the perovskite film. As a result, the PVSCs based on the n-Butylamine treated s-NiOx layer have achieved a dramatical enhancement in PCE to 18.9% with decent stability at the maximum power point tracking. It is believed that this work provides insight and strategy to develop highly reproducible PVSCs with solution derived metal oxide as interlayers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available