4.4 Article

Inflation as an information bottleneck: a strategy for identifying universality classes and making robust predictions

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 5, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP05(2019)065

Keywords

Cosmology of Theories beyond the SM; Flux compactifications

Funding

  1. ERC Consolidator Grant STRINGFLATION under the HORIZON 2020 grant [647995]
  2. German Science Foundation (DFG) within the Collaborative Research Centre 676 Particles, Strings and the Early Universe

Ask authors/readers for more resources

In this work we propose a statistical approach to handling sources of theoretical uncertainty in string theory models of inflation. By viewing a model of inflation as a probabilistic graph, we show that there is an inevitable information bottleneck between the ultraviolet input of the theory and observables, as a simple consequence of the data processing theorem. This information bottleneck can result in strong hierarchies in the sensitivity of observables to the parameters of the underlying model and hence universal predictions with respect to at least some microphysical considerations. We also find other intriguing behaviour, such as sharp transitions in the predictions when certain hyperparameters cross a critical value. We develop a robust numerical approach to studying these behaviours by adapting methods often seen in the context of machine learning. We first test our approach by applying it to well known examples of universality, sharp transitions, and concentration phenomena in random matrix theory. We then apply the method to inflation with axion monodromy. We find universality with respect to a number of model parameters and that consistency with observational constraints implies that with very high probability certain perturbative corrections are non-negligible.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available