4.5 Article

Characteristics of Spherical Organic Particles Emitted from Fixed-Bed Residential Coal Combustion

Journal

ATMOSPHERE
Volume 10, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/atmos10080441

Keywords

aerosols; carbonaceous spherical particles; coal braziers; morphology; stoves

Funding

  1. University of Johannesburg through a PDRF grant from the Faculty of Engineering and the Built Environment
  2. Global Alliance for Clean Cookstoves (GACC)
  3. South African National Energy Development Institute (SANEDI) [ENV-0607-128]
  4. German GIZ

Ask authors/readers for more resources

Residential coal combustion is one of the most significant sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. This study investigated single coal-burning particles emitted when using different fire-ignition techniques (top-lit up-draft versus bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the Sustainable Energy Technology and Research Centre Laboratory, University of Johannesburg. The individual particles (700) were investigated using a scanning electron microscope equipped with energy-dispersive X-ray spectroscopy (EDX). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into electronically dark and bright. The EDX analysis showed that 70% of the dark spherical organic particles had higher (60%) relative oxygen content than in the bright SOPs. The morphology of spherical organic particles were quantified and classified into four categories: 50% were bare single particles; 35% particles were aggregated and formed diffusion accretion chains; 10% had inclusions, and 5% were deformed due to impaction on filter material during sampling. This study concludes that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. The authors also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion and that they have the potential to absorb sunlight thereby affecting the earth's radiative budget and climate. This study provides insights into the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available