4.7 Article

Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation

Journal

REMOTE SENSING
Volume 11, Issue 15, Pages -

Publisher

MDPI
DOI: 10.3390/rs11151763

Keywords

leaf area index (LAI); UAV RGB imagery; color index; texture; rice

Funding

  1. National Key Research and Development Program [2016YFD0300608]
  2. Fundamental Research Funds for the Central University [KYZ201502, KJQN201725]
  3. National Natural Science Foundation of China [31601222, 31725020]
  4. Natural Science Foundation of Jiangsu Province [BK20150663]
  5. earmarked fund for Jiangsu Agricultural Industry Technology System [JATS [2018] 290]
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  7. 111 project [B16026]

Ask authors/readers for more resources

Leaf area index (LAI) is a fundamental indicator of plant growth status in agronomic and environmental studies. Due to rapid advances in unmanned aerial vehicle (UAV) and sensor technologies, UAV-based remote sensing is emerging as a promising solution for monitoring crop LAI with great flexibility and applicability. This study aimed to determine the feasibility of combining color and texture information derived from UAV-based digital images for estimating LAI of rice (Oryza sativa L.). Rice field trials were conducted at two sites using different nitrogen application rates, varieties, and transplanting methods during 2016 to 2017. Digital images were collected using a consumer-grade UAV after sampling at key growth stages of tillering, stem elongation, panicle initiation and booting. Vegetation color indices (CIs) and grey level co-occurrence matrix-based textures were extracted from mosaicked UAV ortho-images for each plot. As a solution of using indices composed by two different textures, normalized difference texture indices (NDTIs) were calculated by two randomly selected textures. The relationships between rice LAIs and each calculated index were then compared using simple linear regression. Multivariate regression models with different input sets were further used to test the potential of combining CIs with various textures for rice LAI estimation. The results revealed that the visible atmospherically resistant index (VARI) based on three visible bands and the NDTI based on the mean textures derived from the red and green bands were the best for LAI retrieval in the CI and NDTI groups, respectively. Independent accuracy assessment showed that random forest (RF) exhibited the best predictive performance when combining CI and texture inputs (R-2 = 0.84, RMSE = 0.87, MAE = 0.69). This study introduces a promising solution of combining color indices and textures from UAV-based digital imagery for rice LAI estimation. Future studies are needed on finding the best operation mode, suitable ground resolution, and optimal predictive methods for practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available