4.7 Article

Hydroxypropylsulfonation/Caproylation of Cornstarch to Enhance Its Adhesion to PLA Fibers for PLA Sizing

Journal

POLYMERS
Volume 11, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/polym11071197

Keywords

hydroxypropylsulfonation/caproylation; cornstarch; past stability; adhesion; PLA fibers; film properties

Funding

  1. Natural Science Foundation of Anhui Province [1908085ME124]
  2. Key Research and Development Project of Anhui Province [201904a06020001]
  3. Pre-research Project of National Natural Science Foundation of China [2018yyzr08]
  4. Science and Technology Planning Project ofWuhu City [2018pt04]

Ask authors/readers for more resources

The impact of hydroxypropylsulfonation/caproylation on the adhesion of cornstarch to polylactic acid (PLA) fibers was investigated for ameliorating the applications such as PLA sizing. The hydroxypropylsulfonated and caproylated cornstarch (HCS) samples with different degrees of substitution (DS) were synthesized by a hydroxypropylsulfonation of acid-converted cornstarch (ACS) with 3-chloro-2-hydroxy-1-propanesulfonic acid sodium salt (CHPS-Na) and subsequently a caproylation with caproic anhydride (CA). The HCS granules were characterized by Fourier transform infrared spectroscopic and scanning electron microscopy. The adhesion was evaluated by measuring the bonding forces of the PLA roving impregnated. The mechanical behaviors of the adhesive layers were estimated by determining the properties of the films. The results of adhesion measurement were also analyzed especially through the wetting and spreading of the paste on the fiber surfaces, as well as the failure type, internal stress and mechanical behaviors of the adhesive layers among fibers. Additionally, apparent viscosity and its stability of the pastes were also determined. It was found that hydroxypropylsulfonation/caproylation was not only able to obviously improve the adhesion of ACS to PLA fibers, but also capable of further improving the adhesion of hydroxypropylsulfonated starch (HS) to the fibers. With the rise in the total DS, the adhesion gradually increased. The two substituents improved the wetting and spreading, reduced the internal stress, lowered the probabilities of interfacial failure and cohesive failure, decreased the film brittleness, and increased the van der Waals force at the interfaces. Moreover, the HCS samples with a stability of above 85% could meet the demand on the stability for sizing. Considering the experimental results of the adhesion and the analysis of the results, HCS showed potential in the application of PLA sizing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available