4.7 Article

The Orthotospovirus nonstructural protein NSs suppresses plant MYC-regulated jasmonate signaling leading to enhanced vector attraction and performance

Journal

PLOS PATHOGENS
Volume 15, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1007897

Keywords

-

Funding

  1. Chinese Academy of Sciences (Strategic Priority Research Program) [XDB11040300]
  2. National Natural Science Foundation of China [31830073, 31522046, 31672001]

Ask authors/readers for more resources

Pandemics of vector-borne human and plant diseases often depend on the behaviors of their arthropod vectors. Arboviruses, including many bunyaviruses, manipulate vector behavior to accelerate their own transmission to vertebrates, birds, insects, and plants. However, the molecular mechanism underlying this manipulation remains elusive. Here, we report that the non-structural protein NSs of Tomato spotted wilt orthotospovirus, a prototype of the Tospoviridae family and the Orthotospovirus genus, is a key viral factor that indirectly modifies vector preference and increases vector performance. NSs suppresses the biosynthesis of plant volatile monoterpenes, which serve as repellents of the vector western flower thrips (WFT, Frankliniella occidentalis). NSs directly interacts with MYC2, the jasmonate (JA) signaling master regulator and its two close homologs MYC3 and MYC4, to disable JA-mediated activation of terpene synthase genes. The dysfunction of the MYCs subsequently attenuates host defenses, increases the attraction of thrips, and improves thrips fitness. Moreover, MYC2 associated with NSs of Tomato zonate spot orthotospovirus, another Euro/Asian-type orthotospovirus, suggesting that MYC2 is an evolutionarily conserved target of Orthotospovirus species for suppression of terpene-based resistance to promote vector performance. These findings elucidate the molecular mechanism through which an orthotospovirus indirectly manipulates vector behaviors and therefore facilitates pathogen transmission. Our results provide insights into the molecular mechanisms by which Orthotospovirus NSs counteracts plant immunity for pathogen transmission. Author summary Most bunyaviruses are transmitted by arthropod vectors, and some of them can modify the behaviors of their arthropod vectors to increase transmission to mammals, birds, and plants. NSs is a non-structural bunyavirus protein with multiple functions that acts as an avirulence determinant and silencing suppressor. In this study, we identified a new function of NSs as a conserved manipulator of vector behavior via plant. NSs suppresses jasmonate-mediated plant immunity against thrips by directly interacting with several homologs of MYC transcription factors, the core regulators of the jasmonate-signaling pathway. This hijacking by NSs enhances thrips preference and performance. Therefore, our data support the hypothesis that MYC2 is a convergent target that plant pathogens manipulate to promote their survival in plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available