4.7 Article

Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency

Journal

NANO-MICRO LETTERS
Volume 11, Issue 1, Pages -

Publisher

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-019-0281-1

Keywords

Solar energy; Plasma-made nanostructures; Photothermal conversion; Water purification

Funding

  1. National Natural Science Foundation of China [51722604]
  2. University of Nevada, Reno
  3. Australian Research Council

Ask authors/readers for more resources

HighlightsNew concept of solar vapour gap membrane distillation (SVGMD) is based on synergizing of nanochannel-guided water transport, localized heating, and membrane separation from feed solution.First-time introduction of the gap enables long-term stability and non-fouling membrane.SVGMD exhibits a solar-water energy efficiency higher than state-of-the-art solar vapour systems. AbstractPhotothermal membrane distillation (MD) is a promising technology for desalination and water purification. However, solar-thermal conversion suffers from low energy efficiency (a typical solar-water efficiency of similar to 50%), while complex modifications are needed to reduce membrane fouling. Here, we demonstrate a new concept of solar vapour gap membrane distillation (SVGMD) synergistically combining self-guided water transport, localized heating, and separation of membrane from feed solution. A free-standing, multifunctional light absorber based on graphene array is custom-designed to locally heat the thin water layer transporting through graphene nanochannels. The as-generated vapour passes through a gap and condenses, while salt/contaminants are rejected before reaching the membrane. The high solar-water efficiency (73.4% at 1 sun), clean water collection ratio (82.3%), excellent anti-fouling performance, and stable permeate flux in continuous operation over 72h are simultaneously achieved. Meanwhile, SVGMD inherits the advantage of MD in microorganism removal and water collection, enabling the solar-water efficiency 3.5 times higher compared to state-of-the-art solar vapour systems. A scaled system to treat oil/seawater mixtures under natural sunlight is developed with a purified water yield of 92.8kgm(-2)day(-1). Our results can be applied for diverse mixed-phase feeds, leading to the next-generation solar-driven MD technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available