4.7 Article

The Impact of Near Natural Forest Management on the Carbon Stock and Sequestration Potential of Pinus massoniana (Lamb.) and Cunninghamia lanceolata (Lamb.) Hook. Plantations

Journal

FORESTS
Volume 10, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/f10080626

Keywords

near natural forest management; Pinus massoniana; Cunninghamia lanceolata; plantation; carbon allocation; climate change

Categories

Funding

  1. fundamental research funds of CAF [CAFYBB2019MA003]
  2. 13th Five-Year National Key Technology RD Program [2017YFD0600304]
  3. Guangxi forestry science and technology projects (Document of Guangxi forestry department [2016]) [37]

Ask authors/readers for more resources

Quantifying the impact of forest management on carbon (C) stock is important for evaluating and enhancing the ability of plantations to mitigate climate change. Near natural forest management (NNFM) through species enrichment planting in single species plantations, structural adjustment, and understory protection is widely used in plantation management. However, its long-term effect on forest ecosystem C stock remains unclear. We therefore selected two typical coniferous plantations in southwest China, Pinus massoniana (Lamb.) and Cunninghamia lanceolate (Lamb.) Hook., to explore the effects of long-term NNFM on ecosystem C storage. The C content and stock of different components in the pure plantations of P. massoniana (PCK) and C. lanceolata (CCK), and their corresponding near natural managed forests (PCN and CCN, respectively), were investigated during eight years of NNFM beginning in 2008. In 2016, there was no change in the vegetation C content, while soil C content in the 0-20 cm and 20-40 cm layers significantly increased, compared to the pure forests. In the P. massoniana and C. lanceolata plantations, NNFM increased the ecosystem C stock by 31.8% and 24.3%, respectively. Overall, the total C stock of soil and arborous layer accounted for 98.2%-99.4% of the whole ecosystem C stock. The increase in the biomass of the retained and underplanted trees led to a greater increase in the arborous C stock in the near natural forests than in the controls. The NNFM exhibited an increasingly positive correlation with the ecosystem C stock over time. Long-term NNFM enhances ecosystem C sequestration by increasing tree growth rate at individual and stand scales, as well as by likely changing the litter decomposition rate resulting from shifts in species composition and stand density. These results indicated that NNFM plays a positive role in achieving multi-objective silviculture and climate change mitigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available