4.7 Article

Changes in Carbon Balance of Harvested Wood Products Resulting from DifferentWood Utilization Scenarios

Journal

FORESTS
Volume 10, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/f10070590

Keywords

bioeconomy; wood utilization; harvested wood products; carbon storage; CO2 emission

Categories

Funding

  1. Slovak Research and Development Agency [APVV-14-0869]
  2. Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic
  3. Slovak Academy of Sciences, VEGA [1/0666/19]

Ask authors/readers for more resources

The bioeconomy focuses on the production of renewable biological resources and the utilisation of these resources and waste streams into value added products. One of the most important aims of the forest industry is the sustainable production of wood. Improved utilization of available industrial wood assortments generates profit for all in the supply chain. At the same time, it may ensure the production of long-life harvested wood products (HWP), and consequently, increase the volume of carbon stored. The objective of this study is to compare di ff erent scenarios of industrial wood utilization in Slovakia and the resulting impacts on the national carbon balance. In the proposed scenarios, we aimed to evaluate changes in the current utilization of domestic wood resources through optimizing harvested wood assortments. Two inventory stock methods were applied to determine the potential quality of domestic wood and its utilization through appropriate distribution of outputs. The model scenario assumes that the higher share of industrial roundwood utilised to produce long-life HWP (sawnwood, wood-based panels) will increase carbon sequestration in HWP. Other scenarios quantify the di ff erences between the carbon volumes stored in HWP using the modelled wood assortment supplemented with alternatives with and without export. The results confirmed that increasing the level of carbon stored in HWP can be achieved by changing the wood assortment structure, while maintaining the same level of volume felled. The highest level of carbon stock was observed in the scenario assuming the optimal structure of wood assortments and no wood export. The scenario that optimized wood assortments and excluded wood exports resulted in the highest level of predicted carbon stock, estimated at 4.87 million tons (mil. tons).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available