4.7 Article

Suit-type Wearable Robot Powered by Shape-memory-alloy-based Fabric Muscle

Journal

SCIENTIFIC REPORTS
Volume 9, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-45722-x

Keywords

-

Funding

  1. Korea Institute of Machinery and Materials (KIMM) [NK215E]
  2. National Research Council of Science & Technology (NST), Republic of Korea [NK215E] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

A suit-type wearable robot (STWR) is a new type of soft wearable robot (SWR) that can be worn easily anywhere and anytime to assist the muscular strength of wearers because it can be worn like normal clothes and is comfortable to wear even with no power supply. This paper proposes an STWR, in which a shape-memory-alloy-based fabric muscle (SFM) is used as the actuator. The STWR, which weighs less than 1 kg, has a simple structure, with the following components: SFMs, wire encoders for measuring the contraction length of the SFMs, and BOA that fix the actuators on the forearms. In this study, a position controller for the SFM using the wire encoder was developed, and a prototype STWR was fabricated using this position controller. Moreover, by putting the STWR on a mannequin, step-response experiments were performed in which the arms of the mannequin lifted barbells weighing 2 kg and 4 kg to a certain target position. A fast response of moving to the target position in less than 1 s was observed in all steps except for the initial heating step for the 2 kg barbell. The response speed of the SFM was noticeably slower for the 4 kg barbell compared to that for the 2 kg barbell; it moved to the target position in approximately 3 s in all the steps except for the initial heating step. The SFM-applied STWR could overcome the limitations of conventional robots in terms of weight and inconvenience, thereby demonstrating the application potential of STWRs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available