4.7 Article

Transcriptional landscape of soybean (Glycine max) embryonic axes during germination in the presence of paclobutrazol, a gibberellin biosynthesis inhibitor

Journal

SCIENTIFIC REPORTS
Volume 9, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-019-45898-2

Keywords

-

Funding

  1. Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) [E-26/010.002019/2014, E-26/102.259/2013]
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) [001]
  3. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Ask authors/readers for more resources

Gibberellins (GA) are key positive regulators of seed germination. Although the GA effects on seed germination have been studied in a number of species, little is known about the transcriptional reprogramming modulated by GA during this phase in species other than Arabidopsis thaliana. Here we report the transcriptome analysis of soybean embryonic axes during germination in the presence of paclobutrazol (PBZ), a GA biosynthesis inhibitor. We found a number of differentially expressed cell wall metabolism genes, supporting their roles in cell expansion during germination. Several genes involved in the biosynthesis and signaling of other phytohormones were also modulated, indicating an intensive hormonal crosstalk at the embryonic axis. We have also found 26 photosynthesis genes that are up-regulated by PBZ at 24 hours after imbibition (HAI) and down-regulated at 36 HAI, which led us to suggest that this is part of a strategy to implement an autotrophic growth program in the absence of GA-driven mobilization of reserves. Finally, 30 transcription factors (mostly from the MYB, bHLH, and bZIP families) were down-regulated by PBZ and are likely downstream GA targets that will drive transcriptional changes during germination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available