4.7 Article

The Transition to Paschen's Law for Microscale Gas Breakdown at Subatmospheric Pressure

Journal

SCIENTIFIC REPORTS
Volume 9, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-42111-2

Keywords

-

Funding

  1. Office of Naval Research [N00014-17-1-2702]
  2. National Natural Science Foundation of China [51607138, 51521065]
  3. China Postdoctoral Science Foundation [2016M602820]
  4. Research Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect [SKLIPR.1512]
  5. Directed Energy Professional Society

Ask authors/readers for more resources

The decrease in electronic device size necessitates greater understanding of gas breakdown and electron emission at microscale to optimize performance. While traditional breakdown theory using Paschen's law (PL), driven byTownsend avalanche, fails for gap distance d less than or similar to 15 mu m, recent studies have derived analytic equations for breakdown voltage when field emission and Townsend avalanche drive breakdown. This study derives a new analytic equation that predicts breakdown voltage VB within 4% of the exact numerical results of a previously derived theory and new experimental results at subatmospheric pressure for gap distances from 1-25 mu m. At atmospheric pressure, V-B transitions to PL near the product of pressure and gap distance, pd, corresponding to the Paschen minimum; at lower pressures, the transition to PL occurs to the left of the minimum. We further show that the work function plays a major role in determining which side of the Paschen minimum V-B transitions to PL as pressure approaches atmospheric pressure while field enhancement and the secondary emission coefficient play smaller roles. These results indicate that appropriate combinations of these parameters cause V-B to transition to PL to the left of the Paschen minimum, which would yield an extended plateau similar to some microscale gas breakdown experimental observations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available